Congruence Permutable and Congruence 3-Permutable Locally Finite Varieties
نویسندگان
چکیده
منابع مشابه
Distributive Congruence Lattices of Congruence-permutable Algebras
We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...
متن کاملA CONGRUENCE IDENTITY SATISFIED BY m-PERMUTABLE VARIETIES
We present a new and useful congruence identity satisfied by m-permutable varieties. It has been proved in [L1] that every m-permutable variety satisfies a non-trivial lattice identity (depending only on m). In [L2] we have found another interesting identity: Theorem 1. For m ≥ 3, every m-permutable variety satisfies the congruence identity αβh = αγh, for h = m[ m+1 2 ]− 1 Here, [ ] denotes int...
متن کاملPrincipal and Syntactic Congruences in Congruence-distributive and Congruence-permutable Varieties
We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite. 2000 Mathematics subject classification: 08B10.
متن کاملCongruence semimodular varieties I: Locally finite varieties
The lattice of closed subsets of a set under such a closure operator is semimodular. Perhaps the best known example of a closure operator satisfying the exchange principle is the closure operator on a vector space W where for X ___ W we let C(X) equal the span of X. The lattice of C-closed subsets of W is isomorphic to Con(W) in a natural way; indeed, if Y _~ W x W and Cg(Y) denotes the congrue...
متن کاملIDEMPOTENT n-PERMUTABLE VARIETIES
One of the important classes of varieties identified in tame congruence theory is the class of varieties which are n-permutable for some n. In this paper we prove two results: (1) For every n > 1 there is a polynomial-time algorithm which, given a finite idempotent algebra A in a finite language, determines whether the variety generated by A is n-permutable; (2) A variety is n-permutable for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1993
ISSN: 0021-8693
DOI: 10.1006/jabr.1993.1061